Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392733

RESUMO

The aim of this work is to characterize and evaluate the retention of Cu2+ and Ni2+ from single and binary systems by alginate-Moroccan clay bio-composite with the utilization of calcium chloride as a cross-linking agent, using the ionotropic gelation method. The bio-nanocomposite was characterized by using a variety of techniques (SEM, EDX, XRD, and pHPZC). The efficiency of the adsorbent was investigated under different experimental conditions by varying parameters such as pH, initial concentration, and contact time. To demonstrate the adsorption kinetics, various kinetic models were tried and assessed, including pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models. The research results show that the adsorption process of Cu2+ and Ni2+ metal ions follows a pseudo-second-order kinetic model, and the corresponding rate constants were identified. To evaluate the parameters related to the adsorption process in both single and binary systems, different mathematical models of isotherms, such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich, were investigated. The correlation coefficients obtained showed that the most suitable isotherm for describing this adsorption process is the Langmuir model. The process is considered to be physical and endothermic, as suggested by the positive values of ΔH° and ΔS°, indicating increased randomness at the solid/liquid interface during Cu2+ and Ni2+ adsorption. Furthermore, the spontaneity of the process is confirmed by the negative values of ∆G°. The bio-nanocomposite beads demonstrated a maximum adsorption capacity of 370.37 mg/g for Ni2+ and 454.54 mg/g for Cu2+ in the single system. In the binary system, the maximum adsorption capacities were observed to be 357.14 mg/g for Ni2+ and 370.37 mg/g for Cu2+. There is significant evidence for the use of alginate-Moroccan clay bio-nanocomposite as a cost-effective alternative adsorbent for the efficient removal of metal ions in single and binary systems.

2.
Bioresour Technol ; 394: 130197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086462

RESUMO

In this study, effective biomaterials were prepared from marine macroalgae, namely Fucus spiralis (F.S), Ulva intestinalis (U.I), and Corallina officinalis (C.O). The ability to adsorb the hazardous organic dye crystal violet (CV) was examined, revealing different adsorptive properties for the three algae. The removal of CV dye occurred onto only a homogeneous monolayer for F.S, and both a homogeneous monolayer and a heterogeneous multilayer for U.I and C.O algae. The predicted monolayer capacities at 25 °C were approximately 53 mg/g, 55 mg/g, and 97 mg/g for F.S, C.O, and U.I, respectively. The adsorption of CV dye on all the algae was found to follow a pseudo-second-order rate. Ulva intestinalis algae, as a potential adsorbent of CV dye, were also tested in the adsorption of inorganic substances and demonstrated significant efficiency in the removal of chromium (VI). The findings highlight various adsorption properties and the relevance of macroalgae for wastewater treatment applications.


Assuntos
Rodófitas , Alga Marinha , Ulva , Poluentes Químicos da Água , Cromo , Violeta Genciana , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
3.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139918

RESUMO

The aim of this work is to synthesize and characterize alginate-Moroccan clay bio-composite in order to improve our understanding of the adsorption of inorganic pollutants found in textile effluents. Characterization of the bio-composite used was carried out using a variety of techniques (IR-TF, SEM, DRX, and pHZPC). The influence of the medium's physico-chemical parameters (temperature, pH, initial concentration, etc.) on the retention of inorganic pollutants was also studied. Studies of adsorption and inorganic pollutants such as orthophosphate (H2PO4- and HPO42-) and nitrate (NO3-) ions were carried out, using simple solutions from the laboratory, in a batch system. This study explored the impact of adsorbent dose, contact time, solution pH, and temperature on the adsorption process. Various kinetic models, including pseudo-first-order, pseudo-second-order, intra-particle diffusion, and Elovich models, were tested and evaluated, to illustrate the adsorption kinetics. This study's findings demonstrated that the adsorption process follows second-order kinetics, with associated rate constants successfully determined. The correlation coefficient for the pseudo-second-order kinetic model is nearly equal to 1 (>0.98), and the value of theoretical adsorption capacity (qe,the) is comparable to the experimental one (qe,the = 58.14 mg/g for H2PO4-, qe,the = 54.64 mg/g for HPO42-, and qe,the = 52.63 mg/g for NO3-). Additionally, the adsorption equilibrium was investigated through the application of various mathematical models, including the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, to assess the mechanistic parameters associated with the adsorption process. Among these models, the Langmuir isotherm emerged as the most suitable one for characterizing the adsorption of H2PO4-, HPO42-, and NO3- ions using bio-nanocomposite beads. The maximum adsorbed amounts of metal ions by the bio-nanocomposite used were 625 mg/g for H2PO4-, 909.09 mg/g for HPO42-, and 588.23 mg/g for NO3- from the batch system. The endothermic and physical nature of the adsorption is suggested by the positive values of ΔH°, which is consistent with experimental findings. The adsorption process is spontaneous, as evidenced by the negative ΔG° values. Positive ΔS° values indicate increased randomness at the solid/liquid interface during adsorption of ion-organic ions onto the engineered bio-nanocomposite. The obtained results demonstrated that, from a scientific perspective, alginate-Moroccan clay bio-nanocomposites exhibit a highly significant adsorption capability for the removal of oxyanions in aqueous environments.

4.
Environ Sci Pollut Res Int ; 27(36): 45767-45774, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803591

RESUMO

Layered double hydroxides (LDHs), known as a class of anionic clays, have attracted considerable attention recently due to their potential applications in different areas as catalyst materials, energy materials, and adsorbent materials for environmental remediation, especially for anionic pollutant removal. In this study, magnesium aluminum layered double hydroxide (MgAl-LDH) was synthesized by two methods: standard coprecipitation and urea hydrolysis. Their textural properties and morphologies were examined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential (DTG) analysis, and point of zero charge (pHpzc). The specific surface area was calculated from BET adsorption equation. The results indicated that the crystallinity and the regularity of the samples prepared by urea hydrolysis were much preferable to those prepared by the coprecipitation method. Their sorption properties toward phosphate were investigated and the experimental evidence showed that, at the initial concentration of 100 mg L-1 and at room temperature, the LDH synthesized by urea hydrolysis had a percentage removal of 94.3 ± 1.12% toward phosphate ions while 74.1 ± 1.34% were uptaked by LDH synthesized by coprecipitation method, suggesting that the crystallinity affects the sorption capability. The sorption mechanism indicates that phosphate ions could be sorbed onto LDHs via electrostatic attraction, ligand exchange, and ion exchange.


Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Hidrólise , Hidróxidos , Cinética , Ureia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...